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Abstract

I introduce heterogeneous geodesic learning, a signal communication model based on shortest-path

distance on an underlying graph among short-run players of entrants. A long-run incumbent tries to

establish a reputation of a commitment type and maximize its long-run payoff by playing an entry

deterrence repeated game, each period playing with one myopic entrant. This seemingly intractable

geodesic belief updating rule is shown to satisfy 5 core properties outlined in Cripps (2018) [5] and

hence can be mapped into a Bayesian updating as shown in proposition 1 of the same paper. Next

we utilize theorem by Watson (1993) [22] on geodesic learning framework to argue that a reputation

can be established in finite number of periods without equilibrium, with only best-responding agents.

Depending on my framework parameters as well as edge distribution of the graph, reputation can

be established faster or slower, resulting in higher or lower maximized payoff. Simulation results are

consistent with analytical results, showing an upper bound of 94.6% of the total Stackelberg payoff

achieved by a perfectly patient long-run player. Market entry simulations for various specifications

were also completed.
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1 Introduction

Reputation effects arise in games where there is a discrepancy between agents and their goals within

a specific time frame. A long-run player can have the aim to establish an ”identity”, to which its

opponents will attach a probability and take into account the possibility of this ”identity” in their

actions. This identity can be useful to the long-run agent in terms of future payoffs. Entry deterrence

games are of particular interest in modeling reputation effects in repeated games. If the long-run

incumbent is patient enough, it can be reasonable to follow a non-equilibrium strategy in the beginning

stages of the repeated game and disincentivize short-run players from entering the market. In other

words, a weak incumbent may be motivated to mimic a crazy type and establish a reputation of an

aggressive market monopolist.

The conventional Chainstore game assumes that the agents are endowed with perfect monitoring

capabilities and that they can perfectly observe the outcomes of the previous games. This case leads

to the Chainstore paradox: with subgame perfect Nash equilibrium all agents should enter the game,

because in the last stage the incumbent has no incentive to fight and recursively in no stage the

incumbent will adopt an aggressive strategy. However, this is inconsistent with empirical evidence and

the puzzle is solved by introducing the notion of perfect Bayesian Nash equilibrium. Such equilibrium

is reached by endowing the entrants with beliefs regarding the commitment and normal types of the

incumbent. Having obtained perfect observations of previous plays, the incumbent (both sane and

insane) successfully establishes the reputation of a crazy player and deters entry into almost all stages

of the game and achieves long-run Stackelberg payoff under certain conditions on the discount factor.

I introduce a model with imperfect observations of the previous play with learning: the mechanism

of learning is that of a communication diffusion resting on an underlying graph network of entrants.

I will model an entry deterrence Chainstore repeated game with a twist of imperfect monitoring and

heterogeneous belief updating to account for spatial disparities of the network. Attaching network-

specific beliefs will allow me to introduce heterogeneity in myopic entrants’ belief conjectures. Note that

several models have attempted to account for imperfect monitoring and neighbor-based play history

observations while relating these to the future discount factor δ needed to achieve the Stackelberg

payoff (Raub and Weesie (1990) [18]).

The properties of communication or signal diffusion, as I will specify in the next sections, stems from
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the core properties of the network. The edges of graphs can otherwise be referred to as communication

channels. If edges are comparatively more than the nodes, the signals will take less time (edges)

to travel to other nodes, which enhances the learning process. Thus, one can conjecture that on

dense networks reputation effects are stronger and entries are more sparsely distributed in time. The

properties and convergence to equilibrium will also depend on the specific network structure. A key

differentiating feature in the proposed model is the heterogeneity of beliefs. A logical way to understand

the heterogeneity in transferring information is using the length of shortest path between nodes as a

proxy for understanding how much of the communication is lost. Nodes that are connected with one

edge will have perfect communication, while nodes connected minimally by length k path will have the

communication discounted by some f(k). In a sense, not only are future payoffs discounted but also

the communications. This discount factor itself depends on the specific distribution of the edges and

nodes. For example, Raub and Weeesie (1990) [18] show how the time discount factor can be related

to the probabilistic framework of the network formation, such as the probability of a node existing

between two edges. This probability with the observable set of histories determines the PBE of the

game. In this case, similar to the argument of the probabilistic framework of edge formation, one can

also analyze the discount factor of communication or learning and relate it to the equilibrium of the

repeated game. Shifting the perspective from the time horizon to the space dimension enables me to

draw the properties of the learning rule from the characteristics of the underlying graph. Thus, my

model builds up on the Kreps and Wilson model [16] by adding another dimension of learning: spatial

learning.

Another puzzle surrounding this project is concerned with why the agent should be induced or

interested in communicating its play’s outcome. As specified, the monopolist is not going to play with

the same entrant anymore, so the entrant has no incentive in clearly communicating the monopolist’s

type to later players. However, I will abstract from this complexity and will leave this for a possible

extension section. There are several ways in which a researcher can explain this, such as the outcome

payoff being shared between the agents or the implementation of utility transfer models; however these

are beyond the scope of this thesis.

The model proposed in this thesis will first characterize a geodesic belief updating rule, then

prove that it is Bayesian or can be mapped to a Bayesian updating. Next, it will state a reputation
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result based on the model, analyze market entry frequencies based on graph characteristics, as well as

several growth results on the number of nodes. The upcoming sections of this thesis are structured as

follows: the literature review will go on by emphasizing key features of seminal papers on the topic of

reputation effects and delineate their setbacks. Empirical evidence from economics paper citations will

be presented in the next section, showing that collaborations with more dense networks have a higher

citation index. I will then present the model setup of the heterogeneous geodesic learning. These

sections will be followed by the introduction of 6 critical properties on this learning or belief updating

rule, after which I will refer back to 2 existing results to show that the simulations of the game will

produce sensible results even with best-responding agents without the need for an equilibrium. Finally,

I will represent simulation results, characterize market entry with comparative statics of the underlying

parameters and discuss results with possible extensions.

2 Literature review

Preliminary literature starts with Fudenberg and Maskin (1983) [9] exploring strategic rivalry and

extensively expanding notions around repeated play and plausible payoff sets, by introducing different

specifications of Folk Theorems. The literature evolving around repeated games is multidimensional,

including theoretical and empirical work in network theory, collaborative and experimental games,

business innovation and technology adoption. This subfield is of particular interest, because it opens

new opportunities for explaining the seemingly irrational agent behavior and payoff achievements pre-

viously implausible to do so. The literature of reputation effects in repeated games is rooted in the

seminal models of Kreps and Wilson (1981) [16]. I will be using payoff matrices from this model to

derive results. Fudenberg and Levine (1992) [8] suggest an imperfectly observed reputation model

and characterize the lower and upper bounds on the possibly achievable payoff sets of the long-run

player. In their 1989 paper [7], they also characterize the equilibrium selection and prove that a pos-

itive probability of the commitment type is enough to achieve the Stackelberg payoff pending on the

discount factor. As shown in results section, my simulations have achieved an upper bound of 94.6

% from the total Stackelberg payoff of the repeated game. However, the majority of the literature

abstracts from the endogenous effects of the communication between the short-run agents or assumes

they observe the history of previous plays in the same way, i.e. there is a single belief value main-
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tained throughout the game and all agents make decisions based on this value. The belief sets are

homogeneous across the entrants. There is extensive literature separately on the collaboration games

and games on networks, which characterize equilibria and collaboration conditions in general networks.

Logically the underlying network has to affect the collaboration tendencies in, for example, repeated

prisoner’s dilemma games, hinting towards more collaboration on denser graphs, argued in Coleman JS

(1988) [4]. Dall’Asta, Marsili and Pin (2012) [6] go on to define a new concept of collaborative equilibria

in trees and random graphs, which establish a Nash equilibrium of repeated public good contribution

games with punishment strategies on networks (which can be mapped to repeated prisoner’s dilemma

games). Significant contribution in the best-response dynamics on networks and the speed of signal

transmission (or learning) is made in paper series by Golub and Jackson (2011) [10], which take a step

to analyze slower belief convergence according to what they define as degree-weighted homophily, as

compared to shortest distance approach we will adopt, which is affected by network density but not

from homophily. One can argue that the underlying graph is itself the representation of the existing

homophily of agents, especially in the economic framework of market competition. Connections and

communication patterns on general graphs are heavily analyzed in Goyal (2007) [12] concentrating on

coordination games. Communication patterns in networks are introduced in Lippert and Spagnolo

(2009) [17] leading to different equilibrium restrictions based on specific graph properties. An inter-

esting approach to intertwine graph theory, combinatorics and signaling games is introduced in Hu,

Skyrms, Tarres (2018) [13], which uses Roth-Erev reinforcement learning rule to create a correspon-

dence between signals and maximize the expected payoff of the game. In most of the cases, network

literature concentrates on repeated coordination, public good provision and seller-buyer games, mostly

characterizing graph properties necessary for Nash equilibrium, characterizing payoff boundaries as the

discount factor converges to 1, as well as exploring strategies and equilibria on specific graphs, such as

star-shaped, linear and circular ones. Golub and Jackson (2010) [14] also introduce a heterogeneous

updating rule similar to that of DeGroot learning to understand restrictions required for “convergence

to truth” states. Their and Sadler’s literature mostly analyzes belief influences, conformity and con-

vergence properties, while the reputation literature predominantly bases on Kreps and Wilson’s model

of homogeneous beliefs with exogenous information and a Perfect Bayesian Nash equilibrium concept

of a well-chosen belief updating rule. The latter is appropriate for getting analytically tractable and
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sensible results; however, the belief rule can be perturbed in a way to give more room for possible

research extensions, although risking to not find a tractable equilibrium concept. The proposed model

of heterogeneous belief updating, proposed in this research project, falls into this category and a com-

prehensive scanning of belief updating literature will also be utilized. The closest existing framework

to our model is given by Raub and Weesie (1990) [18]. They analyze several specifications of pre-

vious play history-based belief updating in a repeated prisoner’s dilemma with a probabilistic graph

framework and show that the time discount factor can be related to the probabilistic framework of the

network formation, such as the probability of a node existing between two edges. These specifications

include atomized (other players do not observe anyone’s history), perfectly embedded (agents observe

their neighbor’s past play outcomes) and imperfectly embedded (neighbor’s play is observed with a

time lag) observation cases. The first case corresponds to the model of this thesis with no edges, the

second case - to the proposed model with a perfectly connected graph and the last case - imperfectly

connected graph. The authors characterize the conditions on discount factor needed to maximize the

agents’ payoff and show that trigger strategies are sustainable equilibria given certain conditions on

the expected discount value and defection temptation propensity (depends on payoffs) with restric-

tions being the toughest for the atomized case. These restrictions are similar to results of my model

regarding the parameter value of signal spread α as shown in my results.

My paper also finds motivation from Battigalli and Watson (1997) [1] on establishing reputation

effects with heterogeneous beliefs. Notable findings on network based belief updating are summarized

by Jackson [15], stating significant results on DeGroot learning. The belief updating rule I will propose

is more generalized than that of the DeGroot learning, which only utilizes neighbor’s beliefs with

influence scores to update beliefs for the next stage. My model, while using the idea of the DeGroot

learning, proposes a rule which enables all players in the network to influence the belief of a single

player, independent of whether they are neighbors. The key point is the existence of a path between

the agents and the influencer. The influence score (or weight) as defined in DeGroot will be a function

of the shortest path distance, as specified in the next sections. One of the fundamental existing results

in DeGroot modeling, is that a consensus can be reached on graphs only if the graph is connected

and aperiodic, i. e. the greatest common divisor of all cycle lengths is 0 [15]. Introducing imperfect

communication between agents in the network after an outcome of play was observed is motivated by
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the heterogeneity of accessing information and connectivity disparities in the social network. Thus,

we will introduce a fixed network of agents that will communicate to each other the outcomes of their

play. The comparison of speed of play outcome communication and hence reputation establishment

between different graphs can be related to the stochastic dominance of its edge distributions argued

in section 8.

As shown in Cripps (2018) [5] any updating rule can be characterized by a homeomorphism to a

Bayesian learning rule under certain conditions. This is the key for mixing Kreps and Wilson’s general

framework of reputation with Watson’s results and a more reasonable network-based belief learning

rule that is intractable. Fixing what I define as geodesic learning, which depends on graph properties,

I will use Cripps’ argument to show that this learning rule can be mapped into a Bayesian learning

framework, which will enable me to use Watson’s reputation refinement result without equilibrium

(1993) [22]. Hence, I will not introduce any equilibrium concept other than rationalizability and best-

response dynamics. As experimental evidence in cooperative games suggest (Dal Bó et al (2011) [2])

cooperation is decreased with experience if the outcome is not supported by the equilibrium; however,

this does not pose a threat to our model robustness, because the best response dynamics ensures

that the agents play Nash equilibrium in each period game (and hence the outcome is supported

by equilibrium), even though the total game equilibrium might be different as shown in Kreps and

Wilson’s model. The latter argues that the game will be classified into 3 main phases: the long-run

agents play the pure commitment strategy in the beginning of the game while the short run agents

stay out, then both sides start to play mixed strategies and finally the long-run agent accommodates

and the entrant enters.

Empirical entry threat analyses have also been performed, such as Goolsbee and Syverson (2004) [11],

but are mainly focusing on price mechanisms and abstract from signal transmission and theoretical

learning rules. Reputation effects have also been empirically analyzed in patent citation networks, a

simple novel example of which I will introduce in the empirical evidence section.

The intersection of repeated coordination game theory, network and communication theory and

entry deterrence games has limited coverage in the existing literature of reputation effects. At least one

of the above-mentioned components is missing in all papers I have encountered: some model reputation

effects in entry deterrence games without an underlying heterogeneous signal transmission or complex
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belief updating. Others analyze games on networks heavily from the perspective of coordination games

and not of strategic competition. The discerning features in all papers are the information mechanism

and the choice of equilibrium concept. My paper uses geodesic learning information mechanism and a

best-response dynamic equilibrium concept.

3 Empirical Evidence

I will use this section to argue that reputation effects are established faster in more connected graphs.

To find an applicable setting, I have collected a database of published paper collaborations and ci-

tation data. Several specifications of citation and collaboration data were tested. I used the Scopus

academic paper search engine provided by Elsevier to collect data on papers in the field of Economics,

Econometrics and Finance starting from the publishing year of 1860. 1, 257, 444 articles’ details were

gathered. Each data cell included information about the paper title, year, authors and their identi-

fication numbers in Elsevier, publishing source, starting and ending pages of the article and citation

counts. For each author ID, I calculated the average number of collaborators for each year t based on

published papers before year t. Then for each paper published at year t, the average number of col-

laborators for its authors at year t was summed. I denoted this as the connectivity index of the paper.

The average number of collaborators at t is a proxy of the average number of edges a specific author

ID has managed to establish before year t in the network of authors. Summarizing this “collaboration

inclination” indices for each paper serves as a proxy for the paper’s position in the network of authors,

showing how well connected the paper is in the network and its capability to establish a reputation

through the collaboration channels of its author(s). We conjecture that papers that have more channels

to spread their reputation have higher citation numbers. We also include the number of authors as an

explanatory variable to test this hypothesis to account for upward bias in the summed connectivity

index, even though the correlation coefficient for author count and citation count was found to be

0.01. Because computing these indices was computationally costly, I have tested the hypothesis with

two specifications. For the first specification, papers in 2000 − 2004 were tested. Only papers that

had at least 1 citation were included and the number of papers included from each year was capped

at either 20000 or the earliest paper with minimum 1 citation. For the second specification, papers

from 2000− 2009 were tested with top 500 cited papers included from each year. The patterns of the
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variables are shown in Figure 1.

Figure 1: Explanatory variables, time series for specification 1 (left) and 2 (right)

Yearly and publisher/publishing source fixed effects were included. No publisher was found to

significantly impact the number of citations. Summary of results is presented in Table 1. Specification

1 was tested only with yearly fixed effects, while specification 2 was tested with yearly and both yearly

and publisher fixed effects. For the first specification both regressions resulted in highly significant

paper connectivity index, while for specification 2 the strongest impact was noted when both fixed

effects were included. The latter also had the highest R-squared value. Ramsey RESET test for

omitted variables was performed for the last regression and an F-value of 5.92 concluded that the

model has no omitted variables.
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Table 2: Empirical evidence results

Specification 1 Specification 2

no fe yr fe no fe yr fe source fe both

auth 10.91∗∗∗ 10.75∗∗∗ −5.303 −3.267 −1.349 0.822

(0.526) (0.527) (5.698) (5.688) (6.067) (6.057)

conn 4.166∗∗∗ 4.445∗∗∗ 4.510∗ 6.174∗∗ 4.033 6.133∗∗

(0.283) (0.291) (2.465) (2.511) (2.511) (2.564)

const 21.54∗∗∗ 25.86∗∗∗ 539.1∗∗∗ 577.8∗∗∗ 423.7 531.4

(1.005) (1.436) (13.81) (24.82) (463.7) (462.8)

R-squared 0.011 0.012 0.001 0.011 0.212 0.220

obs 81,610 81,610 5,000 5,000 5,000 5,000

Notes: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

4 Model Setup

A long-run player faces a sequence of short-run entrants, one at a time. Each period a finite entry-

deterrence game is played, the outcome of which is observed heterogeneously. Compared to the existing

models, our proposed framework enables for richer interpretation by allowing the entrants to observe

outcomes via signals of their short-run fellow entrants differently based on their connectivity. Denote

one-period game as G = {∆A1,∆A2;u1, u2}, where A1 ∈ {Fight, Accommodate} is the action space

of the incumbent and A2 ∈ {In,Out} is the action space of short-run entrants and ∆A1,∆A2 are

mixed strategies. ui : ∆A1 × ∆A2 −→ R is the payoff function. The Bayesian incumbent has two

types - normal and the commitment type. Commitment type always fights (which is the Stackelberg

payoff for this type). Payoff matrices are shown below for commitment (left) and sane (right) types. I

have borrowed these payoffs from the conventional Kreps and Wilson’s model. Abstracting from the

notation used later, let us assume that the short-run agent believes that the incumbent’s type is crazy

with probability p. Then, u2(In) = p(b−1)+(1−p)b and u2(Out) = 0. Entering will be best-response
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Entrant

In Out

Incumbent
Fight (0, b− 1) (a, 0)

Acc (−1, b) (a, 0)

Entrant

In Out

Incumbent
Fight (−1, b− 1) (a, 0)

Acc (0, b) (a, 0)

if and only if u2(In) > u2(Out) =⇒ p(b− 1) + (1− p)b > 0 =⇒ b− p > 0 =⇒ p < b.

n short-run players (entrants) are connected on a graph/network. With some abuse of nota-

tion, denote G = (n, e) as the underlying network, where nodes are entrants and edges are their

communication channels. To define Bayesian types formally, assume the long-run player, has types

from set Θ, characterized by parameter θ ∈ {crazy, sane} := Θ. Assume entrants hold initial beliefs

µ0 = (µ0
1, µ

0
2, ..., µ

0
n) ∈ ∆(Θ) at stage 0 when the game has not started, where ∆(Θ) denotes the sim-

plex of belief parameters. Incumbent engages in a repeated game at periods t = 1, 2, ..., n. Incumbent

starts playing with one and only one entrant at each period. After each period t, the outcome of that

period and all previous periods constitute an outcome set ωt = {ω1
j , ω

2
k, ..., ω

t
m}, where superscripts

denote the period of outcome and the subscripts the index of the entrant engaged in the one-period

game. Keeping track of the short-run players is necessary for the belief updating rule specified in the

upcoming sections. Note that if some element of outcome ωt is observed by some player i, the rest are

are not necessarily observed by this player because of the updating rule we will impose.

After each period only the agents that are connected to some degree with the entrant who plays

in that period will observe the outcome and will update their beliefs according to the shortest path

distance to that player. Note that this is trivial in a connected graph, because all agents will observe

all outcomes although will update their beliefs differently. The latter will become furthermore trivial

in a perfectly connected graph where all agents will observe the outcomes and update their beliefs

identically, because the shortest path length from any agent to any other one is 1. Denote the belief

of player i as µt
i at period t, which is the belief/probability that the incumbent is the commitment

type. We can also adopt alternative notation of belief being a vector and including the complementary

probability of the incumbent being the sane type, i. e. (µt
i, 1−µt

i). Assume all entrants hold the same

initial beliefs, µ0
i = µ0 ∀i. After outcome ωt

j at some period t with player j, beliefs are updated in the

following way:

µt+1
i = µt

i + αf(dij)ω
t
j ∀i (1)
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for all i’s that are connected to j with a path, i. e. dij is defined, where dij denotes the shortest

path length from i to j. With this belief updating rule we are introducing a channel of communication

between short-run agents who will transfer information about the outcome of each period game. Define

ωt
j = 1 if the incumbent fought in period t with entrant j, and ωt

j = −1 if she accommodated. Through-

out this analysis I will adopt the first specification of belief definition, designating the probability of

the crazy type. A signal of +1 will increase the belief, i. e. the agent will be more inclined towards

thinking that the incumbent is the commitment type. After each period, the playing entrant j sends

a signal sj ∈ {+1, 0,−1} = S, where S is the signal space. Assume that there is a probability of the

playing entrant to lie about the game outcome. Denote p+1 := {p+1
+1, p

−1
+1} the probabilities that the

signal is s = +1 when the outcome of the game in that period was +1 and −1, respectively. Similarly,

denote p−1 := {p+1
−1, p

−1
−1}. Also, define pcrazy = {pcrazy+1 , pcrazy−1 }, the probabilities of reporting +1 and

−1 respectively, when the true type of incumbent is crazy (i. e. the outcome was ”Fight”). Similarly,

psane = {psane+1 , psane−1 }. Throughout this analysis, we will assume that the sane type is associated with

outcome −1 of accommodate. Note that pcrazy−1 = p+1
−1 and psane+1 = p−1

+1: thus, the 4 entries in each

pair are identical. If we put those probabilities in a matrix, the first pair will be the rows and the

second pair will be the columns. Assuming that the agents can lie about the outcome, the signals are

generated from the outcome distribution ∆(ω). The entrants have priors µ0 ∈ ∆(Θ) and signals with

probabilities (pθ)θ∈Θ, where θ ∈ {crazy, sane}. After each period an outcome of one-period game G is

realized and agent i updates beliefs according to

µt+1
i = µt

i + αf(dij)s
t
j ∀i (2)

where we have substituted ωt
j with the signal stj , a realization of either +1 or −1, f(·) is well-defined

function on positive integers, dij is the shortest path length from i to j. The choice of function f(·)

will reflect the properties of spatial transmission mechanism. It is intuitive to impose faster diffusion

of signal among neighbors or nearest nodes on the underlying graph G = (n, e). Hence, f ′(·) < 0,

f : N × N −→ P, where P is the set of positive integers and N the set of short-run entrants. If the

entrant stays out, it transmits a signal of 0 and beliefs are not updated. Parameter α denotes the

speed of transmission. Note that beliefs need to stay in the range of (0, 1); however, this concern is

trivial because our results stay invariant to an affine transformation of beliefs and threshold values, so
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with proper normalization and tuning of α, µ0andf(·) we can guarantee that beliefs are well-defined.

To sum up, the incumbent plays with a different entrant j in each period t. After the outcome

of the game ωt
j is realized, j sends a signal with probability distribution (pθ)θ∈Θ and other short-run

agents who are connected to j with some path on G = (n, e) observe the signal stj and update their

beliefs according to (2). The proposed belief updating rule (or network learning rule) satisfies several

properties that will be conducive to reputation arguments in the repeated game. These properties were

first popularized and comprehensively studied in Cripps (2018) [5]. The following section proceeds by

showing that our seemingly intractable updating rule can be mapped onto Bayesian learning. I will

call the proposed belief updating rule as geodesic learning.

5 Geodesic Learning Properties

These properties are defined and taken from Cripps (2018).

Property 5.1. Uninformativeness: If pcrazy = psane, beliefs are not updated.

We will ensure that this property is guaranteed apriori by pcrazy ̸= psane.

Suppose entrant receives a set of signals at period t (when it is called to play and WLOG it is connected

to all previous players by some path, so that t signals are reached) ζ = (ζ1, ζ2, ..., ζt) and define function

m : ζ −→ ζ as a permutation of signal order.

Property 5.2. Permutation: Belief updating rule U : signal set × prior −→ posterior satisfies the

permutation property if U(ζ, µ0) = U(m(ζ), µ0), i. e. the order of received signals is irrelevant.

Geodesic learning satisfies this property. Denote the realized signal set received by an arbitrary

short-run player i at the end of period t, st = (s1j1 , s
2
j2
, ..., stjt), where jx is the entrant index at period

x. m(st) is a permutation of st. Under st, the updated beliefs are: µt+1
i = µt

i + α
∑

x<=t f(dijx)s
x
jx
.

Because geodesic learning accumulates all signals commutatively, under permutation the second term

is not changed, given also the shortest path distance function is uniquely determined for each player

jx. Thus, for any m(·),
∑

x<=t f(dim(jx))m(sjx) =
∑

x<=t f(dijx)sjx .

Property 5.3. Non-dogmatic: Belief updating rule is continuous and any belief value can be achieved

through appropriate signal probabilities and outcome distributions.

15



Cripps [5] argues that property 5.1 is enough to deduce property 5.3 for binary experiments (which

is our case since ∥Θ∥ = 2). Moreover,

µt+1
i = µt

i + α
∑
x<=t

f(dijx)s
x
jx = µx (3)

α
∑
x<=t

f(dijx)s
x
jx = µx − µt

i (4)

∑
x<=t

f(dijx)s
x
jx = Constant (5)

which has a solution due to choice of f(·).

Property 5.4. Divisibility: If posterior beliefs are identical in cases where 1) agent updates beliefs

based on each signal separately, 2) agent updates beliefs simultaneously using all available signals, then

the belief updating rule is said to be divisible.

Suppose the realized signal set received by an arbitrary short-run player i at the end of period

t, st = (s1j1 , s
2
j2
, ..., stjt) and WLOG denote some partition of it into k-sets st1, s

t
2, ..., s

t
k, such that

sti ∩ stj = ∅ ∀i, j and
⋃

i s
t
i = st. Assume in case 1 agent receives signals separately one at a time

from st and in case 2 receives separately k times, each time τ receiving the bunch of signals that are

in the partition stτ . In the former case, belief updating proceeds as follows in t steps (the number of

periods):

µ0
i = µ0

µ1
i = µ0 + αs1j1f(dij1)

µ2
i = µ1

i + αs2j2f(dij2)

...

µt
i = µt−1

i + αstjtf(dijt)

(6)

Resulting in,

µt
i = µ0 + α(s1j1f(dij1) + s2j2f(dij2) + ...+ stjtf(dijt))

= µ0 + α(
∑
l∈st

sljlf(dijl))
(7)
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In the latter case of k-partitioned signals, we have:

µ0
i = µ0

µ1
i = µ0 + α

∑
l∈st1

sljlf(dijl)

µ2
i = µ1

i + α
∑
l∈st2

sljlf(dijl)

...

µk
i = µk−1

i + α
∑
l∈stk

sljlf(dijl)

(8)

Resulting in,

µt
i = µk

i = µ0 + α(
∑
l∈st1

sljlf(dijl) + ...+
∑
l∈stk

sljlf(dijl))

= µ0 + α(
∑

l∈st1∪...∪stk

sljlf(dijl))

= µ0 + α(
∑
l∈st

sljlf(dijl))

(9)

where third steps using the fact that sti ∩ stj = ∅ ∀i, j and
⋃

i s
t
i = st. The resulting posterior

beliefs are the same for both cases. This is a core property of the belief updating rule that we posited

and it stems from the commutative nature of signal-based updating and static distribution of the

geodesic distances (shortest path lengths). It reflects the fact that agents accumulate information about

incumbent linearly as new signals are generated from a given distribution, taking into consideration

both compatible and conflicting signals of different periods, discounting them spatially, based on the

shortest distance to the ”information-spreader” giving higher credibility to those who are closer. The

credibility argument is reflected in f ′(·) < 0.

Definition 5.5. A belief updating rule is proximity-based if f(dij) > f(dik) if dij < dik for a fixed

entrant i and arbitrary j, k, such that dijanddik are defined.

Cripps [5] argues that if the belief updating rule satisfies properties 5.1-5.4, we can establish several

properties on the network-based belief updating mechanism, such as the updating rule being homo-

geneous of degree 0 in signaling probabilities p+, p−. However, we are interested in characterizing

our belief updating in a Bayesian way (required for later sections), for which we need the geodesic
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learning to satisfy the last property of the series, unbiasedness, which is where we start restricting the

transmission mechanism to specific parameter values.

Property 5.6. Unbiasedness: The updating rule Un : µ0 ×St −→ µt satisfies unbiasedness property if

the posterior predicted distribution equals the prior beliefs, i. e.

µ0 ≡
∑
s∈S

(
∑
θ∈Θ

µθp
θ
s)U

0
n(µ, (p

θ)θ∈Θ) (10)

Theorem 5.7. Geodesic learning satisfies unbiasedness property for some initial belief µ∗(pθ).

Proof: Because the proof proceeds by proving unbiasedness for a single signal, we will first show

that this is not a concern, since a state with multiple signals can be bijectively mapped to a state with a

single signal. Because the belief updating rule is divisible we can look at the agent who has accumulated

evidence and needs to update when he is only called to play. Thus, at that point the agent has a

collection of signals, either +1 or −1 and their corresponding geodesic distances. For example, suppose

the available signals for some agent i are Accommodate (−1) coming from j with dij = 2 and Fight

(+1) coming from k with dik = 4. Hence, their total perturbance to the initial belief of i will be dij ·

(−1)+dik ·(+1) = −2+4 = 2. Because geodesic distances and signal values are natural numbers, this is

equivalent to a single signal +1 from some agent l with dil = 2. Hence, due to divisibility, unbiasedness

will pose a restrictive condition only on the initial belief and not on beliefs at every stage. Denote

the signal probabilities as pcrazy+1 ≡ probability that the incumbent fought and entrant sent signal + 1.

psane−1 , pcrazy−1 , psane+1 are defined similarly. Initial belief of a random entrant i is µ0
i = µ0 or µ0

i = (µ0, 1−µ0).

When the agent receives signal +1 the beliefs are updated to (µ0+αf(dij)), and when the signal is −1,

updated to (µ0 − αf(dij)). Note that the agent cares only about the observed signal and not the true

type of the incumbent. Because this learning rule (belief updating rule) is divisible by property 5.4,

suppose the agent updates its beliefs just before it is called to play, i. e. when it has the most signals

available observed. This corresponds to the least granular partition case discussed earlier where the

partitioned set is equal to the whole set. As we will see, it will pose the least restrictions on the prior

beliefs: thus, assume the agent updates only once from its original belief µ0
i =⇒ posterior predicted
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distribution equals

[µ0
i p

crazy
+1 + (1− µ0

i )p
sane
+1 ](µ0 + α

∑
j

f(dij) + [µ0
i p

crazy
−1 + (1− µ0)psane−1 ](µ0

i − α
∑
j

f(dij)) (11)

Note that because when the entrant stays out, the beliefs are not updated and agent can be thought

of as not sending a signal, which means we can assume pcrazy+1 + psane+1 = 1 and pcrazy−1 + psane−1 = 1. For

unbiasedness,

µ0
i ≡ [µ0

i p
crazy
+1 + (1− µ0

i )p
sane
+1 ](µ0 + α

∑
j

f(dij) + [µ0
i p

crazy
−1 + (1− µ0)psane−1 ](µ0

i − α
∑
j

f(dij))

µ0
i ≡ (µ0

i )
2pc+1+µ0

i p
c
+1α

∑
j

f(dij)+µ0
i +α

∑
j

f(dij)−µ0
i p

s
−1−ps−1α

∑
j

f(dij)−(µ0
i )

2−µα
∑
j

f(dij)+

µ0
i )

2ps−1 + µ0
i p

s
−1α

∑
j

f(dij) + (µ0
i )

2 − µ0
iα

∑
j

f(dij)−

(µ0
i )

2pc+1 + µ0
i p

c
+1α

∑
j

f(dij) + µ0
i p

s
−1 − ps−1α

∑
j

f(dij)− (µ0
i )

2p2−1 + µ0
i p

s
−1α

∑
j

f(dij)

Cancelling out identical terms, we get

α
∑
j

f(dij)− 2ps−1α
∑
j

f(dij) + 2µ0
i p

c
+1α

∑
j

f(dij)− 2µ0
iα

∑
j

f(dij) + 2µ0
iαp

s
−1

∑
j

f(dij) ≡ 0

α
∑
j

f(dij)[−1 + 2ps−1 − 2µ0
i p

c
+1 + 2µ0

i − 2µ0
i p

s
−1] ≡ 0

2ps−1 − 2µ0
i (1− pc+1 − ps−1) ≡ 1

µ0
i ≡

2ps−1 − 1

2(pc+1 + ps−1 − 1)
= µ∗

This is the condition required for prior beliefs for unbiased updating. Note that if ps−1 = pc+1,

then µ0
i = 1

2 no matter the exact values of ps−1 and pc+1. We can be ignorant of the specific signaling

probabilities given that the entrant will tell the truth with the same probability regardless of the game
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outcome. Also note that it is sufficient to establish the unbiasedness for µ0
i , because the complementary

probability of incumbent being sane will be satisfied automatically. The value of α does not affect the

level of initial priors needed for martingale unbiasedness. False reporting probabilities are also not

explicitly in this expression. Martingale unbiasedness property is the core characterizing complex

beliefs and their corresponding equilibria in repeated games. Considering the comparative statics with

respect to ps−1 and pc+1, we have

∂µ∗

∂ps−1

=
2 · 2(pc+1 + ps−1 − 1)− 2 · (2ps−1 − 1)

4(pc+1 + ps−1 − 1)2

=
4pc+1 + 4ps−1 − 4− 4ps−1 + 2

4(pc+1 + ps−1 − 1)2

=
2(2pc+1 − 1)

4(pc+1 + ps−1 − 1)2

Thus, ∂µ∗

∂ps−1
> 0 if pc+1 >

1
2 and < 0 if pc+1 <

1
2 . The intuition behind this is the following: if the agent

is inclined to tell the truth in periods of fight outcome, then the more inclined it is to also tell the truth

on accommodation outcome periods, the higher the value of initial belief is required. If the agent is

more likely to tell lies on fight outcomes, the opposite holds. This leads to a conjecture that the key

variable is the dispersion of truthfulness based on outcome, i. e. (pc+1 − ps−1). Similarly,

∂µ∗

∂pc+1

=
1− 2ps−1

2(pc+1 + ps−1 − 1)2

Comparative statics with respect to pc+1 exhibits exactly opposite characteristics to that of ps−1. When

ps−1 = pc+1, both partial derivatives equal 1
2(pc+1+ps−1−1) . Using the above discussion, we can state the

following theorem.

Theorem 5.8. Given G = (n, e) network of short-run entrants and a long-run incumbent involved in

a repeated game, where each period agents play game G = {∆A1,∆A2;u1, u2}, if agents use geodesic

belief updating rule, there is a homeomorphism F that maps these beliefs into Bayesian belief updating

mechanism. Moreover, if the agents belief updating rule also satisfies property 5.5, then F is an identity.

Proof: We showed that geodesic learning satisfies properties 5.1− 5.4. Thus, using proposition 1
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in Cripps (2018) [5], ∃F : ∆(Θ) −→ ∆(Θ), such that

U(µ, ps) = F−1[
F1(µ)p

c
s∑

θ∈Θ Fθ(µ)pθs
,

F2(µ)p
s
s∑

θ∈Θ Fθ(µ)pθs
] (12)

where subscript s is the signal received, F (µ) = (F1(µ), F2(µ)) and Un(µ, ) = (u(µ, p+1), u(µ, p−1)).

By proposition 5 in the same paper [5], adding property 5.5 ensures that F = I. Thus, belief updating

Un is Bayesian.

The mechanism of using F on ”shadow” priors and posteriors, and mapping from specified learning

rule to a Bayesian one is given in the Figure 2 below taken from Cripps (2018) [5]. F is creating

Figure 2: Bayesian mapping mechanism, Cripps (2018) [5]

Bayesian shadow updating mechanism. If F = I, then Un is itself a Bayesian updating process and

posterior beliefs satisfy Bayes’ rule. Hence, geodesic learning is Bayesian given priors equal to µ∗. If

pc+1 = ps−1, µ
∗ = 1

2 . Note that µ∗ ∈ [0, 1] =⇒ pc+1 >
1
2 , p

s
−1 <

1
2 =⇒ ∂µ∗

∂ps−1
< 0 and ∂µ∗

∂pc+1
> 0. Because

lower µ∗ values are conducive to establishing reputation of a commitment type, higher probabilities

of truthful reporting of fight outcome decreases µ∗ required for Bayesian updating and establishes

reputation without equilibrium requirement, as shown in the next section. Similarly, higher value of

ps−1 is an impediment to establishing reputation because observing agents will be more likely to learn

about incumbent’s accommodating behavior. Belief martingale unbiasedness property lies in the core

of reputation building in repeated games with a long-run incumbent.

6 Reputation Building

As argued in Watson’s seminal paper, in order to establish a reputation of a crazy incumbent, not only

do agents need to hold a complete knowledge of the game structure, but also each agent (both short-

run and long-run) needs to best-respond to her beliefs. Moreover, the incumbent needs to have 2-nd

order knowledge of entrants’ best-responding to their beliefs. However, the key conditions are on the
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belief sets and updating rules. The latter we have already analyzed extensively in the previous section

and showed that geodesic learning satisfies Watson’s requirements. The major restriction of Watson’s

argument is that beliefs must not be too dispersed and must be Bayesian [22]. The latter we proved

using Cripps propositions 1 and 5 [5], by showing that geodesic learning satisfies all 5 properties.

6.1 Compactness of Beliefs

Because the agents are connected in a random graph, where the number of nodes and edges are

unrestricted, we have to implement properties of a random graph to prove properties on belief sets.

Tracing properties of random graphs is the key to understanding how signal outcomes propagate

through the network of beliefs, affecting immediate neighbors more heavily than the rest. The next

sections take on the tasks of analyzing belief bounds on random graphs and exploring the case of the

linear network.

There are several results in graph theory that can be applied to geodesic learning, such as average

shortest path distance of a random graph being of order (1 + o(1)) logn
logd̃

, where d̃ is the second-order

average degree defined as d̃ =
∑

w2
i∑

wi
, where wi is the degree of node i in random graph (Chung, Lu

(2002) [3]). The next definition is taken from Watson (1993) [22].

Definition 6.1. Given µ ∈ M (belief set) and r > 0, let Br(µ) ≡ {µ′ ∈ M | d(µ, µ′) < r} be the

ball of radius r centered at µ.

A set X ⊂ M is said to be of size k if for each r > 0, X can be covered by some k(r) balls of radius

r, for some k : R+ −→ P , where P is the set of positive integers [22]. An integral part of Watson’s

argument is to prove that belief conjecture set including the belief sets of all short-run entrants is not

too disperse. In other words, the belief set of short-run players is contained in some set of size k. This

is also commonly referred to as the repeated game being of size k in Watson (1993) [22]. It is essential

for players to hold type R− k beliefs, as defined by Watson, requiring: 1) both parties involved in the

one-period game best-respond to their beliefs, 2) belief sets are of size k, 3) game characteristics is a

common knowledge (complete information) [22].
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6.2 Geodesic vs. Euclidean Distance

Denote the distribution of shortest path lengths for player i defined on a random graph G = (n, e) as

Di = (di1, di2, ..., din). This is the building block of geodesic learning. Denote Ti = (τi1, τi2, ..., τin) the

euclidean distance distribution of player i from the rest. It is crucial to fix a unit of distance for T : we

will normalize it in terms of edge units. Thus, the euclidean distance will be measured in edge units

and for simplicity, we normalize all edges having unit length in the underlying graph G.

Theorem 6.2. Ti first-order stochastically dominates Di ∀i since dik < τik ∀i and k.

Proof : Take arbitrary short-run players i, j. Suppose the shortest path connecting them is

(i, x1, x2, ..., xm, j) (per definition, a path is a sequence of players leading from i to j via connected

nodes). For tractability, we assumed the number of intermediary agents between i and j is m,

which implies that dij = m + 1. Construct triangles from consecutive nodes in the following way:

∆1 = (i, x1, x2),∆2 = (x2, x3, x4), ...,∆m−1 = (xm−1, xm, j). The last node of previous triangle is the

first vertex of the next one. This guarantees that we cover all vertices and edges on the path from i

to j. Denote τixj the euclidean distance from player i to xj . By edge length normalization, all consec-

utive players also have unit euclidean distance. Using triangle inequality on ∆1 : τix2 < dix1 + dx1x2 ,

where dij is the geodesic distance as defined earlier. Similarly, on triangle ∆2 : τx2x4 < dx2x3 + dx3x4 .

Applying this process on all triangles, we are left with the i, j and the last vertex of each triangle at

the end of the first elimination round. Note that, even if the initial graph is non-convex, it will become

one in finite number of stages after proper deletion of finite vertices through the elimination procedure

described above. To summarize, at stage 0, we have m+2 vertices and at every next stage the number

of vertices left after elimination is at least half of what was before. The process stops when we are left

with 3 nodes, i, j and an intermediate node of xq, such that q is the highest integer satisfying 2q < m.

Since every triangle in the process is convex, the initial non-convexity does not pose an issue. Thus,

at last stages we get:

τ(i, j) < τ(i, xq) + τ(xq, j) (13)

where each of the terms in the right hand side can be expressed as mutually exclusive and exhaustive

set of consecutive geodesic distances. =⇒ τij < dixi + dx1x2 + ...+ dxmj = dij .

Since f(·) is a decreasing function, f ′(·) < 0 =⇒ f(τ(i, j)) > f(dij), so we can establish upper
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bound and k-size-ability on belief sets using euclidean distances.

Figure 3: Elimination process for Theorem 6.2

Theorem 6.3. Growth Result, Székely (1997) [21]: Let G = (n, e) be a random graph. Let Ψx(n)

be the set of pairs with euclidean distance equal to x for any x. Then #Ψx(n) ≾ n
4
3 for any x.

Proof : This is a known result, but the proof is so beautiful I included it in the Appendices section.

Corollary 6.3.1. For each agent i, the number of short-run players that are of distance x from i in

a random graph, denoted N i
x, is bounded: N i

x ≾ n
1
3

Proof : Since #Ψx(n) := {(i, j) : τij = x} =
∑

i∈N 1(τij = 1) ≾ n
4
3 for any x. Hence,

∑
i∈N N i

x ≾

n
4
3 . Since n is the number of distinct players, N i

x ≾ n
4
3

n = n
1
3 , i. e. N i

x ≤ cnn
1
3 , for some constant

cn, which depends only on n. Note that the last step is permitted because the operation is of order of

magnitude.

Going back to beliefs: µt
i = µ0

i + αsj
∑

all j played before i f(dij) ≤ µ0+α
∑

all j played before i f(τij)
, given

the FOSD property of euclidean distance on geodesic one and sj ≤ 1. Intuitively, this result restrict

the number of immediate neighbors in terms of euclidean distance, as well as the number of neighbors’
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neighbors and so on in an arbitrary graph. It is very reasonable to have a large network with well

connected agents in which case any signal is spread out promptly and reflected in beliefs almost

immediately. In these high-density networks belief can easily reach the upper bound of 1, in which case

the entrant’s beliefs are converging to the same value, so are not dispersed; however, when networks are

sparse or when the parameter value of α or the choice of function f(·) are such that signal transmission

is minimized (assuming all entrants start from the same prior required for martingale unbiasedness

property), better-connected nodes can accumulate information faster, while sparse components of the

graph can be left with minimal signals, thus leading to significant heterogeneity in posterior beliefs.

Theorem 6.3 is what will help to show that even in these cases beliefs are not much different from

each other and can be covered by k balls for some k and ball centers µ1, µ2, ..., µk, since it restricts the

frequency of node’s immediate signals, its neighborhood’s immediate signals and so on.

µt
i = µ0 + α

∑
alljplayed beforei

f(τij) ≾ µ0 + αn
1
3 [f(λ1) + f(λ2) + ...+ f(λγ)] (14)

where γ is the number of distinct euclidean distances and λ1, λ2, ..., λγ are those distances between i

and other short-run entrant (each repeating ≾ n
1
3 times). The number of distinct distances is also

bound from above, and is the famous Erdős–Rényi distinct distances problem solved in 2010. With

appropriate choice of α and f(·) beliefs for i and j can be made arbitrarily close to each other such

that µt
i − µt

j < r(n) for some r(·) > 0 ∀n and period t =⇒ the belief set of entrants’ conjectures can

be covered by k balls where k is a function of threshold r, which is a function of n =⇒ k : R+ −→ P .

Since the belief set and also the game are of size k, we can now use Watson’s theorem in our framework.

Theorem 6.4. Watson 1993 [22]: Take any system of conjectures µ ∈ M of short-run entrants in

Bayesian entry-deterrence repeated game with µ0 ≥ ϵ, and take any outcome history ωt. Then under

conditions of 1) Bayesian updating rule, 2) Best-responding agent, 3) size-k complete information

game,

#{µh < z|h ∈ arbitrary outcome distribution} <
lnϵ

lnz
(15)

for every z ∈ (0, 1).

The incumbent manages to successfully establish a reputation because the number of periods in

which entrants believe that the probability of the incumbent behaving as the sane type is characterized
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by an upper bound, which depends on k and ϵ, the former depending on n, the number of short-run

entrants. Reputation is established even when agents observe outcomes in a spatially discounted

manner and update their beliefs heterogeneously. Note that our framework does not destroy the

reputation of the long-run incumbent after a single period of accommodation outcome, unlike other

models, treating both game outcomes of fight and accommodate as signals of equal magnitude but

opposite signs. In dense networks, this reputation is obviously established faster. Because geodesic

learning is analytically hard to tackle in Perfect Bayesian Equilibrium, by establishing core properties

on the framework, we deduce that for establishing a reputation the system does not need to be in

equilibrium. It is enough for agents to best-respond to their beliefs, making the model both more

reflective of market entry game (via heterogeneous beliefs and observing) and analytically tractable.

7 The Linear Network

Simulations unveil and interesting phenomenon of intermittent entry. This is more expressed and

appealing to explore in the linear case. LetG = (n, e) be a linear graph on set of playersN = {1, 2, ..., n}

and n−1 edges, where only consecutive agents are connected with an edge. All entrants will observe the

outcome of all period games before they are called to play, because G is a connected graph, i. e. there

exists a path form any node to any other one via finite number of edges. Throughout this analysis,

we will assume that entrants play successively, player 1, 2, and so on. However, since our proposed

framework introduced heterogeneity in signal absorption over the graph, immediate neighbors of the

player in the current period will receive the ”strongest” signal (the least spatially discounted signal of

the outcome) and will be more likely to stay out when they are called to play (if the signal was +1).

What we observe is that most of the entrants will stay out, because by the time they are called to

play they would have accumulated enough signals to update their beliefs above some threshold and

stay out by best-responding to that (assuming normal type chases to establish reputation by choosing

Stackelberg action of fighting each period, especially in the beginning of the game). However, staying

out means that the player transmits no information for later entrants and here rises a tradeoff of

whether the agents (especially in initial stages) who have updated their beliefs enough so that their

best-response is to stay out, should nevertheless enter and transmit signal for the benefit of upcoming

players rather than staying out and being better off. Perhaps one can model this as a cooperative game
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of entrants’ collusion, who care about their total payoff from the perspective of a social planner. In

this case, the agent will avoid staying out in initial stages and will help to accumulate enough signals

for the later entrants with positive probability. Moreover, the entrants can possibly disincentivize the

incumbent to fight in initial stages and because of discounting, can also disincentivize establishing

reputation of a crazy type at later stages. However, a myopic entrant will always best-respond to

the one-period game and maximize her one-period payoff, opting to stay out rather than sacrificing

her payoff to the good of total signal accumulation for entrants in upcoming stages. With short-lived

myopic entrants, market entry gaps will be observed, which become lengthier over time. Meanwhile,

the intermittent entries are the agents, who have not managed to pass the belief threshold (due to lack

of signals or connectivity) and think that the incumbent will fight with low probability (µt
i < p = b,as

shown previously in section 4). Intuitively, the signals have been discounted so heavily when reaching

these agents (nodes) that they did not consider them ”seriously” (or credible threats) and did not

update their beliefs significantly. The length of these gaps will depend on the number of nodes and

edges, α, and f(·) as shown below. The very last players in the sequence of entrants receive the most

signals: however, since most agents do not enter market by Theorem 6.3, they (and all other nodes)

receive the signals at much much fewer periods that one could conjecture initially. Denote i1, i2, ..., iβ

the entrants who entered at the end of the repeated game. Denote the threshold of entry belief as p

(this can be determined from payoff matrices in the first section). Because these players entered, at

the time they were called to play their belief of commitment type was lower than p.

Definition 7.1. The number of entrants who stayed out between consecutive entrants il and il+1 is

called gap size and denoted sl.

Assume i1, i. e. the first entrant, is always the player in period 1 (µ0 < p, otherwise the game will

proceed with no entry and signals). For characterizing gap lengths we can assume that the incumbent’s

best-response is to fight in all stages. Simulations in section 9 are also consistent with the fact that

payoff is also optimized by choosing Stackelberg payoff of the commitment type in all stages. Thus,

we can assume a signal of stj = +1 for any playing entrant j and period t. Since s1, and s2 are the gap
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sizes after first and second entries, we have:

µs1+2
i2

= µ0 + αf(s1 + 1) < p

µs1+1
i2−1 = µ0 + αf(s1) > p

µs1+3
i2+1 = µ0 + α[f(1) + f(s1 + 2)] > p

(16)

Note that player i2 + 1 accumulates two signals, from i1 and i2. Note that it is enough to look at the

previous and next players around each entry to characterize the gap length. Assume, f(x) = 1
x , f

′(x) <

0.

f(s1 + 1) <
p− µ0

α
=⇒ 1

s1 + 1
<

p− µ0

α
=⇒ s1 >

α− p+ µ0

p− µ0

f(s1) >
p− µ0

α
=⇒ 1

s1
<

p− µ0

α
=⇒ s1 <

α

p− µ0

f(s1 + 2) + f(1) >
p− µ0

α
=⇒ 1

s1 + 2
>

p− µ0 − α

α
=⇒ s1 <

α− 2p+ 2µ0 + 2α

p− µ0 − α

(17)

giving, α−p+µ0

p−µ0 < s1 < α
p−µ0 = s∗1, requiring α − p + µ0 < α =⇒ p > µ0, i. e. threshold needs to

be higher than the initial beliefs, which we specified earlier. As simulations show, the gaps between

market entries becomes wider over time. Two forces are accountable for this effect: 1) over time

later agents receive more signals, increasing belief value (assuming signal is +1 and contributing to

less entry, 2) later agents have inferior geodesic distribution in linear network (recall that we assumed

that agents enter successively) meaning the signals they received are discounted heavily, leading to the

opposite effect of lagging belief updates and inclination towards entry. As our results show, the first

effect is more dominant.
∂s∗1
∂α = 1

p−µ0 > 0, since p > µ0, and
∂s∗1
∂p = −1

(p−µ0)2
< 0, i. e. the higher the

threshold, the smaller the gap size upper bound and hence the gap size, since less players will have

enough signals to update their beliefs above the threshold, inducing more frequent entry. Similarly,
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∂s∗1
∂µ0 = 1

(p−µ0)2
> 0. Higher prior of commitment type already induces less entry and larger gap sizes.

For gap size after the second entrant, we have

µs1+s2+2
i3

= µ0 + α[f(s1 + s2 + 2) + f(s2 + 1)] < p =⇒ 2s2 + s1 + 3

(s2 + 1)(s1 + s2 + 2)
<

p− µ0

α

µs1+s2+1
i3−1 = µ0 + α[f(s1 + s2 + 1) + f(s2)] > p =⇒ 2s2 + s1 + 1

s2(s1 + s2 + 1)
>

p− µ0

α

µs1+s2+3
i3+1 = µ0 + α[f(s1 + s2 + 3) + f(s2 + 2) + f(1)] > p =⇒

2s2 + s1 + 5 + s1s2 + 2s1 + s22 + 5s2 + 6

(s2 + 2)(s1 + s2 + 3)
>

p− µ0

α

(18)

We need a lower bound on s2, so we will use the first equation of the system, giving

2s2α+ s1α+3α < ps1s2+ps1+ps22+ps2+2ps2+2p−µ0s1s2−µ0s1−µ0s22−µ0s2−2µ0s2−2µ0 =⇒

s22(p− µ0) + s2(3p− 3µ0 + s1p− s1µ
0 − 2α) + 2p− 2µ0 + ps1 − µ0s1 − s1α− 3α > 0

(19)

with only acceptable solutions with s1, s2 > 0 being s2 > 1
2 [
√

4α2+(s1+1)2(p−µ0)2

(p−µ0)2
− 2α

µ0−p
− s1 − 3] = ξ.

Now, s1 < ξ ⇐⇒ s1 ≤ 3α
2(p−µ0)

− 2. Recall, s1 > α−p+µ0

p−µ0 , hence for s1 < s2 we require 3α
2(p−µ0)

− 2 >

α−p+µ0

p−µ0 =⇒ α > 2(p− µ0). Alternatively, we had that s1 <
α

p−µ0 . If ξ ≥ α
p−µ0 , then s2 > s1. Hence,

ξ ≥ α

p− µ0
=⇒ s1 ≤

α2 − 2(µ0)2 + 4µ0p− 2p2

(µ0 − p)2
⇐⇒

α

p− µ0
≤ α2 − 2(µ0)2 + 4µ0p− 2p2

(µ0 − p)2
=⇒

µ0 < p ≤ 1

2
(α+ 2µ0)

(20)
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which is equivalent to above expression of α > 2(p−µ0). Intuitively, this means that gaps will become

wider, i. e. less and less short-run players will enter the market if there is significantly enough signal

diffusion between agents, reflected in parameter α. This is a lower bound on α, which nonetheless does

not pose a concern to beliefs being of size-k in the argument of the previous section, because, firstly,

this lower bound is for a specific choice of function f , and secondly, the choice of f(·) was not fixed in

previous proofs. Thus, this bound does not induce beliefs to be too dispersed.

8 On General Graphs

It is clear that the properties of graphs translate to properties of the model, such as gap length, learning

speed or belief compactness. The distribution of edges on n nodes defines the geodesic probability

distribution. Adding new edges on G, creates a new graph G′ whose geodesic distance distribution first-

order stochastically dominates that of G’s, while rearranging those introduces second-order stochastic

domination (Goyal (2007) [12]).

Proposition 8.1. Let G = (n, e) be network and G′ = G+ gij (adding new edge between nodes i and

j which did not exist on G). Denote D as the geodesic distance cumulative distribution of G and D′

that of G′. Then the following are equivalent: 1) D′ FOSD D, 2) µt
i|G′ > µt

i|G ∀ i and t, assuming

consistent signal of s = +1, 3) Reputation is established faster on G′.

Proof : Note that geodesic distances for any pair of arbitrary nodes cannot be higher in G′ than

in G. Adding gij makes traveling from some node to another through the shortest path is shorter

than before. When gij is added, dik for some random node k is: dik|G′ = min(dik|G, djk|G′ + 1).

Hence, dik|G′ ≥ dik|G for any pair (i, k). Because the choice of (i, k) is arbitrary =⇒ D′ FOSD

D. Consequently, f(dik|G′) ≥ f(dik|G) =⇒ µt
i|G′ ≥ µt

i|G. Because this argument is equivalent to

having higher α, and
∂s∗1
∂α > 0, then the gap size is higher on G′ too. This is intuitive since adding

more edges establishes more channels for signal transmission and enables more agents to update their

beliefs, who were previously receiving no or weak signals. These agents will manage to update their

beliefs above the threshold and will not enter, increasing the gap size and decreasing the number of

entries throughout the game.
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Table 3: α and threshold belief fixed, f(·) changes. Results shown for different n.

Nodes α
Threshold
belief (= b)

Lowest optimal
number of
fight stages

Maximized
payoff

% from
Stackelberg
payoff

Lowest optimal
number of
fight stages

Maximized
payoff

% from
Stackelberg
payoff

f(x) = 1/x f(x) = e−x

5 0.3 0.6 4 4 40 3 2 20.0

10 0.3 0.6 9 11 55.0 9 5 25.0

15 0.3 0.6 9 19 63.3 13 7 23.3

20 0.3 0.6 15 28 70.0 19 10 25.0

25 0.3 0.6 22 35 70.0 23 12 24.0

35 0.3 0.6 30 52 74.3 33 17 24.3

50 0.3 0.6 47 76 76.0 49 25 25.0

65 0.3 0.6 56 101 77.7 63 32 24.6

75 0.3 0.6 65 118 78.7 73 37 24.7

90 0.3 0.6 85 144 80.0 89 45 25.0

100 0.3 0.6 95 161 80.5 99 50 25.0

125 0.3 0.6 115 205 82.0 123 62 24.8

150 0.3 0.6 148 246 82.0 149 75 25.0

250 0.3 0.6 241 422 84.4

300 0.3 0.6 290 510 85.0

9 Simulations and Results

9.1 Best-responding Simulations on Linear Graphs

Simulations with best-responding agents were run on several specifications of α, f(·), as well as graph

properties, such as the number of nodes and edges. The long-run player engages with short-run agents

consecutively starting from agent 1. Since for the general networks simulation section the graph is

created randomly, the choice of short-run entrants’ sequence is irrelevant. Perfectly patient agents

(δ = 1) were assumed in all simulations, as well as an initial belief of µ0 = 0.5.

Tables 3− 5 in this section are for linear graphs. Table 3 shows the results when the transmission

function f(·) is changed. f(x) = e−x is decreasing faster on the set of positive integers, hence for

all numbers of nodes (players) the incumbent establishes reputation at later periods (lowest optimal

number of fight stages is higher for f(x) = e−x except for n = 5). The same trend is noticed for the

maximized cumulative payoff of the incumbent. As discussed, the Stackelberg payoff from each period

is a = 2 and this is the best that a commitment type (or a sane type mimicking the commitment type)

can do. As the number of players goes up (or the number of time periods goes up), the incumbent

achieves a higher proportion of its cumulative Stackelberg payoff by fighting in optimal number of

stages.
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Table 4: Threshold belief and f(·) fixed, α changes. Results shown for different n.

Nodes
Threshold
belief (= b)

f(·)
Lowest optimal
number of
fight stages

Maximized
payoff

% from
Stackelberg
payoff

Lowest optimal
number of
fight stages

Maximized
payoff

% from
Stackelberg
payoff

α = 0.3 α = 0.1

5 0.6 1/x 4 4 40.0 4 1 10.0

10 0.6 1/x 9 11 55.0 9 5 25.0

15 0.6 1/x 9 19 63.3 12 10 33.3

20 0.6 1/x 15 28 70.0 18 16 40.0

25 0.6 1/x 22 35 70.0 14 20 40.0

35 0.6 1/x 30 52 74.3 34 31 44.3

50 0.6 1/x 47 76 76.0 46 50 50.0

65 0.6 1/x 56 101 77.7 62 70 53.8

75 0.6 1/x 65 118 78.7 74 81 54.0

90 0.6 1/x 85 144 80.0 96 100 55.6

100 0.6 1/x 95 161 80.5 98 113 56.5

125 0.6 1/x 115 205 82.0 124 145 58.0

150 0.6 1/x 148 246 82.0 147 180 60.0

250 0.6 1/x 241 422 84.4

300 0.6 1/x 290 510 85.0

Table 4 shows linear simulation results when the value of α is changed. These results are consistent

with previous analytical outcomes, showing that a higher value of α leads to faster reputation effects;

moreover, the difference in optimal fight stages necessary to achieve the highest payoff is more noticeable

for higher values of n (more on this elaborated in the next section). The maximized payoff and % from

Stackelberg payoff are consistently lower for α = 0.1.

In Table 5, the threshold belief is changed. This is the belief level, above which the entrant will

best-respond by not entering the market. As shown earlier and given that entrants are myopic (so

are maximizing payoffs for a single period only), this threshold value is equivalent to b in the payoff

matrix. A higher b makes market entry easier and reputation effects harder to establish. The results in

Table 5 are consistent with my conjectures. In fact, for n ≤ 65, the incumbent does not even manage

to establish a reputation and is left with 0 payoff when b = 0.8. Maximized payoffs % from Stackelberg

payoff are consistently lower for b = 0.8.

Cumulative payoff patterns are shown in Figures 4 and 5 below, confirming analytical comparative

statics results derived in earlier sections, with increasing α and decreasing threshold belief values

associated with faster reputation establishments and higher maximized payoffs. Note that two figures

are shown for different values of n = 75 and n = 50. The patterns are very similar and the only

effect of increased number of players is the level effect in payoff. Higher n linear networks enable more
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Table 5: α and f(·) fixed, threshold belief changes. Results shown for different n.

Nodes α f(·)
Lowest optimal
number of
fight stages

Maximized
payoff

% from
Stackelberg
payoff

Lowest optimal
number of
fight stages

Maximized
payoff

% from
Stackelberg
payoff

b = 0.8 (threshold belief) b = 0.6 (threshold belief)

5 0.1 1/x 0 0 0.0 4 1 10.0

10 0.1 1/x 0 0 0.0 9 5 25.0

15 0.1 1/x 0 0 0.0 12 10 33.3

20 0.1 1/x 0 0 0.0 18 16 40.0

25 0.1 1/x 0 0 0.0 14 20 40.0

35 0.1 1/x 0 0 0.0 34 31 44.3

50 0.1 1/x 0 0 0.0 46 50 50.0

65 0.1 1/x 0 0 0.0 62 70 53.8

75 0.1 1/x 73 4 2.7 74 81 54.0

90 0.1 1/x 89 12 6.7 96 100 55.6

100 0.1 1/x 99 17 8.5 98 113 56.5

125 0.1 1/x 123 29 11.6 124 145 58.0

150 0.1 1/x 149 42 14.0 147 180 60.0

maximized payoff for the incumbent.

Figure 4: Payoff pattern for linear network, fixed n = 75, varying alpha and threshold belief (p = b).

9.2 Market Entry Simulations on Linear Networks

Market entry simulations were run on linear networks. Table 6 varies number of players. The first two

rows, however, show varying levels of the initial belief, confirming the analytical results stating that

higher µ0 results in less entries (7.4 % down from 27.7 %). Linear networks induced on lower number

of players result in harder reputation establishment, have higher market entry %, as shown in the last

column.
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Figure 5: Payoff pattern for linear network, fixed n = 50, varying alpha and threshold belief (p = b).

Table 6: α, f(·) fixed and threshold belief fixed. Results shown for different n.

Nodes α Threshold belief (= b) Initial belief (= µ0) f(·) Number of entries Entry %

1500 0.3 0.6 0.1 1/x 415 27.7

1500 0.3 0.6 0.5 1/x 111 7.4

900 0.3 0.6 0.5 1/x 73 8.1

800 0.3 0.6 0.5 1/x 66 8.3

700 0.3 0.6 0.5 1/x 59 8.4

600 0.3 0.6 0.5 1/x 52 8.7

500 0.3 0.6 0.5 1/x 45 9.0

200 0.3 0.6 0.5 1/x 22 11.0

Table 7 fixes n = 500 and p = b = 0.6 to test results in section 7. Entry % goes down as α goes up.

Moreover, as shown in section 7, higher α values also induce increasing sizes of gaps. The higher the

value of α, the faster signals spread, the less entrants actually enter the market and hence the higher

the gap size. Figure 6 shows the gap sizes for varying levels of α after k-th entry (shown on x axis).

Eventually, the gap size stops growing for each α, while the level effects between different levels of

α are obvious. Figure 7 also shows a chronological market entry visualization. As conjectured, with

increasing levels of α parameter: 1) the gap size goes up, 2) market entries become more sparse, 3)

within each α value, the gaps tend to grow as well. Moreover, the higher the parameter value, the more

the tendency for the gap size to grow in the beginning of the repeated game, as shown in equation

(20) for gap sizes 1 and 2. To sustain increasing gap sizes for later periods, more restrictive conditions

than (20) are needed on α.
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Table 7: n, f(·) fixed and threshold belief fixed, α changes.

Nodes α Threshold belief (= b) Initial belief (= µ0) f(·) Number of entries Entry %

500 0.1 0.6 0.5 1/x 108 21.6

500 0.2 0.6 0.5 1/x 62 12.4

500 0.3 0.6 0.5 1/x 45 9

500 0.4 0.6 0.5 1/x 36 7.2

500 0.5 0.6 0.5 1/x 31 6.2

500 0.6 0.6 0.5 1/x 27 5.4

500 0.7 0.6 0.5 1/x 24 4.8

500 0.8 0.6 0.5 1/x 21 4.2

500 0.9 0.6 0.5 1/x 20 4

500 1 0.6 0.5 1/x 18 3.6

Figure 6: Gap size for linear network, fixed n, varying alpha. Horizontal axis shows the k-th entry.

9.3 Iterated Simulations on General Networks

In each case, a random graph was generated by specifying the number of nodes n and generating edges

between randomly chosen nodes e times. The entrant list is consecutive, fixed as before. Because the

graphs are generated randomly, simulations were repeated 5, 10, 15 times. Results are shown in Tables

8− 10.

Table 8 corroborates the main outcomes established earlier. The most interesting outcome that is

revealed here (also present in previous tables but less evident) is the following: when threshold belief

goes up to 0.8 in sparse networks, the optimal number of periods to fight is 0, i. e. the incumbent is

immediately discouraged to mimic the crazy type. As the graph becomes denser, it starts to become

reasonable to chase to establish a reputation for the incumbent, even though it might take long periods
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Figure 7: Chronological market entry simulation for fixed n and varying α

to do so. Meanwhile, for low threshold values, it is reasonable to start fighting even in sparse networks.

This is why we see that the optimal number of fight stages is higher for b = 0.6 compared to b = 0.8

in the first rows of Table 8. As the density of graph goes up, the optimal number of fight periods

goes down significantly for b = 0.6 and becomes lower than that of b = 0.8. Alternatively, if lowest

optimal number of fight stages is less than 1, one can read it as if it is higher than n (because the

available n time periods are simply not enough to establish a reputation by fighting). With this mental

replacement, lowest optimal number of fight stages column for b = 0.8 is always higher than that of

b = 0.6. This result is also shown in Figure 8.

Table 9 provides closer look at comparison when the number of nodes is changing. It is critical to

observe that initially lower n networks perform better, but lag towards the end of the table as number

of edges increases. I conjecture that there is a saturation point for each n, to which the maximized

payoff and % from Stackelberg payoff converges. The higher the n, the higher this upper bound. This

can explain why % from Stackelberg payoffs swap midway for n = 50 and n = 75.

Table 10 concludes that our results are robust to different values of iterations. The results are more

convergent for higher number of edges, i. e. for more dense networks. For all iteration values, the

incumbent manages to get up to 94.6 % of the possible Stackelberg payoff.
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Figure 8: Lowest optimal number of fight periods, fixed n, α and varying threshold belief.

10 Conclusion

I have introduced an interesting geodesic belief updating (learning) rule, which can be mapped into

a Bayesian one. Using results from graph theory, I showed that belief conjectures of all entrants

are not too disperse and can be covered by k-balls. Hence, Watson’s seminal result [22] with only

best-responding agents can be applied to my framework with no equilibrium concept needed. I have

characterized market entry and gap sizes, ran simulations with varying parameters. Simulation results

were consistent with analytical conjectures, showing: 1) in linear graphs, increasing the number of

players ceteris paribus increases % of maximum possible total Stackelberg payoff achievable by the

long-run incumbent, 2) in linear graphs, increasing α when b is fixed, on average makes establishing

reputation faster with lower optimal number of fight stages needed (Table 4) and higher payoffs, 3)

in linear graphs, increasing b when α is fixed, makes reputation effects harder to establish and less

profitable (Table 5), 4) in linear graphs, market entry is suppressed when any of n, µ0 or α go up

ceteris paribus, 5) in general graphs, establishing reputation is faster/easier when b goes down, graph

becomes denser (number of edges goes up) or α goes up all else equal. The value of n is volatile in

determining trends in payoff levels.
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11 Discussion

The proposed model is a reasonable extension of the Kreps model [16]. The latter assumes that all

entrants observe the previous play histories in the same way, which is not a realistic assumption. This

is the reason why there also has been a lot of research in opinion formation and influence in social

networks, such as the DeGroot modeling, which established certain conditions on the opinion weight

matrix in order for the network to reach consensus, or have aggregation or diffusion properties. This

model shifts the perspective from the time horizon to the spatial dimension induced by underlying

graph properties. Thus, this model builds up on the Kreps and Wilson model by adding another

dimension of learning - i. e. spatial learning.

It is another puzzling factor why the short-run agents should be induced/incentivized or interested

in clearly communicating its play’s outcome, because as specified that the monopolist is not going to

play with him anymore in the future, so the short-run entrant has no incentive in clearly communicating

the incumbent’s type. One of the ways to account for this is to assume that the outcome payoff later

is shared between the agents or the presence of some utility transfer models. Another possibility is to

introduce a hidden stage of communication coordination game, where the stochastically stable outcome

is the state where every node chooses to tell the truth. This can be guaranteed by constructing this

coordination game in a way that telling the truth and cooperating is the risk-dominant action (Goyal,

Theorem 4.7 (2007) [12]).

If the players can also decide on the amount of effort to exert in information transmission, one has

to introduce costs of transmissions and equal it to the marginal benefit from the long run cooperation

in the repeated entry deterrence game. The differences in incentives to tell the truth will open a way for

further research to the notion of maximally independent sets, which will in turn translate to properties

of graphs and subgraphs, as well as the problem of experts and free riders in the form of central and

peripheral players with specific degree connectivity and centrality measures.

A good avenue for future research can involve the analysis of understanding how these connections

in the network can attribute or affect the welfare of entrants collectively and the incumbent in the

long run. Connections in fact, and networks in general serve to perpetuate the inequality in complex

systems since the distribution of degrees and connections are different among the nodes. These lead

to differences in communication efforts and outcomes, which can affect individual payoffs and the
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networks’ welfare in general.

In the sharing with costly information game, Goyal proves that adding new links can have conflicting

effects on the set of equilibria and the payoffs of players, including the general payoff on network [12].

For example, adding links between maximally independent nodes leaves the equilibrium set the same,

however otherwise it alters the equilibrium possibilities and leaves room for Pareto efficiency. This will

not be a problem for our case, because of several useful properties of the model in this research. First,

the belief functions are continuous and monotonic in the initial stages of the game. Adding a link cannot

be harmful for any of the nodes as the communication can be made available to farther away nodes

faster. Adding a link always creates a first order stochastically dominant geodesic distance distribution.

Of course, useful properties also arise in different scenarios as well. For example, individual behavior in

linear quadratic games is completely characterized by Bonacich centrality of players (Goyal (2007) [12]).

Note that one can argue that the transmission of information in this model relies on the fact that

the agents have complete information about the structure of the network fully. In reality, agents only

know the set of their neighbors and have minimal to no information about the full structure of the

underlying network. The model at hand addresses this issue, because the transmission of play outcomes

can be fully broken down into discrete interactions between players who are neighbors. For example,

for a 4-step shortest path communication between player i and j that goes through players l, m, and

n, it can be argued that i has no idea about its path to j. This path consists of sets {j, n}, {n,m},

{m, l} and {l, i} with nodes in each sets being neighbors and hence possessing complete information

on each other without the need to have complete information about the structure of the whole graph.
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Appendices

Theorem .1. Growth Result, Székely (1997) [21]: Let G = (n, e) be a random graph. Let Ψx(n)

be the set of pairs with euclidean distance equal to x for any x. Then #Ψx(n) ≾ n
4
3 for any x.

Proof : First time that this result was established was by Spencer, Szemerédi and Trotter (1984) [19].

The proof idea shown here with all listed cases and possibilities is by Székely (1997) [21]. I will use

the notation of order of magnitude throughout this analysis. A key result used in the proof is Sze-

merédi–Trotter theorem, which counts the number of point-line incidences. The idea of the proof is

to deform any arbitrary graph to a simple graph with no loops or multiple edges, on which we can

apply the Szemerédi–Trotter bound [21]. Fix an arbitrary distance x and denote #Ψx(n) the number

of times this distance occurs between any pairs. From arbitrary agent i the agents who are positioned

of euclidean distance x are located on circle of radius x with centre i. There is a bijection between

the aim of this theorem and counting the number of point-circle incidences, but to be able to use Sze-

merédi–Trotter bound we need to make sure circles are mapped to lines, resulting in a simple graph.

Thus, we will begin with point-circle graph C (nodes being the agents, edges being the arcs connecting

nodes) and proceed by deleting edges to get a simple graph C ′, which will not be much different from

C, so its properties can be transferred to the initial C. C and C ′ both have n nodes, but only C has

#Ψx(n) edges. We proceed as follows: Possibility 1: There exists a loop in C, because only one point

is of distance x from some agent i. We delete such circles, which are at most n. Possibility 2: Two

points are on the same circle, so we delete multiple edges and at most 2n edges are deleted in this

case. Possibility 3: Two points are on two distinct circles, so we delete at least one arc, which means

the number of edges in C is at most halved. All three possibilities are illustrated in the Figure 4.

Figure 9

After this process, we get the simple graph C ′ which has at least e′ ≥ #Ψx(n)− 1
2#Ψx(n)− 3n =

1
2#Ψx(n) − 3n edges. We can now use the crossing number inequality and proceed with the exact

45



cases in the standard proof of Szemerédi–Trotter theorem [20]. Case 1: 1
2#Ψx(n)− 3n > 7n =⇒ we

can apply the crossing number inequality Cr(C ′) ≿ e′3

n2 . Given each crossing consists of 2 edges, its

number should be less than the number of all the possible pairs of nodes, i. e. e′3

n2 ≾ Cr(C ′) ≾
(
n
2

)
≾

n2 =⇒ e′3 ≾ n4 =⇒ e′ ≾ n
4
3 . Now, we showed that e′ ≥ 1

2#Ψx(n) − 3n. If 3n ≤ 1
4#Ψx(n) =⇒

e′ ≥ 1
4#Ψx(n) =⇒ 1

4#Ψx(n) ≤ e′ ≾ n
4
3 =⇒ #Ψx(n) ≾ n

4
3 . If 3n ≥ 1

4#Ψx(n), then #Ψx(n) ≤ 12n,

hence #Ψx(n) ≾ n ≾ n
4
3 . Case 2: 1

2#Ψx(n)− 3n < 7n =⇒ #Ψx(n) ≤ 20n, hence #Ψx(n) ≾ n ≾ n
4
3

for all cases.
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